Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes

Walter Huaraca Huasco a, Cécile A.J. Girardin b, Christopher E. Doughty b, Daniel B. Metcalfe c, Liliana D. Baca a, Javier E. Silva-Espejo a, Darcy G. Cabrera a, Luiz E.O.C. Aragão d, Angela R. Davila a, Toby R. Mathews b, Lidia P. Huaraca-Quispe a, Ivonne Alzamora-Taype a, Luzmila E. Mora a, William Farfán-Rios e, Karina G. Cabrera e, Katherine Halladay b, Norma Salinas-Revilla \textsuperscript{a b}, Miles R. Silman e, Patrick Meir f & Yadvinder Malhi b

a Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
b Environmental Change Institute, University of Oxford, Oxford, UK
c Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
d College of Life and Environmental Sciences, University of Exeter, Exeter, UK
e Center for Energy, Environment, and Sustainability, Wake Forest University, North Carolina, USA
f School of Geosciences, University of Edinburgh, Edinburgh, UK

Published online: 16 Sep 2013.

To link to this article: http://dx.doi.org/10.1080/17550874.2013.819042

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes

*Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru; bEnvironmental Change Institute, University of Oxford, Oxford, UK; cDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden; dCollege of Life and Environmental Sciences, University of Exeter, Exeter, UK; eCenter for Energy, Environment, and Sustainability, Wake Forest University, North Carolina, USA; fSchool of Geosciences, University of Edinburgh, Edinburgh, UK

(Received 20 March 2012; final version received 19 June 2013)

Background: Tropical montane cloud forests (TMCF) are unique ecosystems with high biodiversity and large carbon reservoirs. To date there have been limited descriptions of the carbon cycle of TMCF.

Aims: We present results on the production, allocation and cycling of carbon for two mid-elevation (1500–1750 m) tropical montane cloud forest plots in San Pedro, Koshiqapat Valley, Peru.

Methods: We repeatedly recorded the components of net primary productivity (NPP) using biometric measurements, and autotrophic (R_a) and heterotrophic (R_h) respiration, using gas exchange measurements. From these we estimated gross primary productivity (GPP) and carbon use efficiency (CUE) at the plot level.

Results: The plot at 1500 m was found very productive, with our results comparable with the most productive lowland Amazonian forests. The plot at 1750 m had significantly lower productivity, possibly because of greater cloud immersion. Both plots had similar patterns of NPP allocation, a substantial seasonality in NPP components and little seasonality in R_a.

Conclusions: These two plots lie within the ecotone between lower and upper montane forests, near the level of the cloud base. Climate change is likely to increase elevation of the cloud base, resulting in shifts in forest functioning. Longer-term surveillance of the carbon cycle at these sites would yield valuable insights into the response of TMCFs to a shifting cloud base.

Keywords: Andes; ecophysiology; elevational gradient; gross primary productivity; net primary productivity; carbon use efficiency; soil water content; temperature; tropical montane forests

Introduction

The fixation of carbon through gross primary productivity (GPP) and its respiration through autotrophic and heterotrophic processes in tropical forests are important aspects of the global carbon cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests. Tropical montane forests typically maintain lower above-ground productivity, lower soil nutrient concentrations and slower nutrient turnover than tropical lowland forests (Brujinzeel and Proctor 1995; Benner et al. 2010).

To date, most studies of tropical forest carbon cycling have focused on above-ground components of net primary productivity (NPP), such as wood productivity (e.g. Malhi et al. 2004) and litterfall (e.g. Chave et al. 2009). Recently, a more comprehensive approach to intensive carbon cycling surveillance has been the focus of a network of plots in lowland Amazonia. This approach provides a comprehensive assessment of ecosystem carbon dynamics over an annual cycle, from the rate of fixation of CO₂ by photosynthesis in the canopy (GPP) to the rate of assimilation into biomass (NPP) and emission through autotrophic and heterotrophic respiration (R_a and R_h). Measuring each component of the carbon cycle independently allows us to improve the mechanistic understanding of how these components interact internally and with environmental parameters, and to cross-check with other component measurements for internal consistency in the carbon budget.

Tropical montane forests may be highly sensitive to climate change as temperatures and cloud bases rise, so understanding how processes vary along a tropical elevation gradient can provide fundamental new insights into how temperature controls ecosystem processes and function (Malhi et al. 2010). Here, we present the first comprehensive data set of carbon cycling for a tropical montane forest. We present results from two 1 ha permanent plots in south-eastern Peru, at elevations of 1500 m and 1750 m a.s.l., a zone that is close to mean cloud base altitude in the austral winter and the boundary between the lower montane and upper montane (cloud forest) forest zones, defined by the transition from partial to frequent cloud cover along the eastern escarpment of the Andes. We compared seasonal

*Corresponding authors. Email: cecile.girardin@ouce.ox.ac.uk; yadvinder.malhi@ouce.ox.ac.uk

© 2013 Botanical Society of Scotland and Taylor & Francis
cycles of production, allocation and cycling of carbon at
two mid-elevational tropical forest plots in the Peruvian
Andes. We asked the following research questions:

(1) How do the components of NPP and R_a of these
forests vary over the seasonal cycle and what are
their main climatic drivers?

(2) What are the seasonal trends of total plant carbon
expenditure and carbon use efficiency (CUE) at
both plots?

(3) How do the annual carbon budgets (defined as
NPP, R_a, GPP and CUE) compare between these
two plots in close proximity, both located at the
base of the cloud cover?

Materials and methods

Site characteristics

The San Pedro site (13° 2’ 53″ S, 71° 32’ 23″ W) is
located in the Koshipata Valley, in the cultural buffer zone
of the Parque Nacional del Manú, Cusco, Peru (Table 1).
Since 2003, the Andes Biodiversity Ecosystems Research
Group (ABERG, andesresearch.org) has operated a num-
ber of permanent 1-ha plots in the Koshipata Valley (Malhi
et al. 2010): eight along the Trocha Union ridge-top trail
(1855–3500 m a.s.l.), two at the Estación Biológica de
Wayqecha (2825–3025 m a.s.l.) and two at San Pedro
(1500 and 1750 m a.s.l.) where the valley enters the
Madre de Dios region of Peru. Partial results from the San
Pedro plot at 1500 m a.s.l. have been reported in previ-
ous papers: soil carbon stocks in Zimmermann et al. (2009,
2010), forest above-ground productivity in Girardin et al.
(unpublished). Here we provide the first comprehensive description (and an extended
time series) of the carbon cycling at San Pedro at 1500 m
(SP 1500), and the first data from 1750 m (SP 1750).

With low wood density (0.55 ± 0.01/0.61 ± 0.008 g
cm⁻³ ha⁻¹), a predominance of taxa from lowland rain-
forests (e.g. Anacardiaceae, Moraceae, Myristicaceae), the
abundance of fast-growing species (e.g. Tachigali spp.,
Tapirira spp., Alchornea spp.), little occurrence of classic
dominant cloud forest species (e.g. Weinmannia spp.), little
occurrence of tree ferns and epiphytes, the plant composi-
tion of SP 1500 is closer to that of sub-montane to lowland
tropical forests (Rapp and Silman 2012). SP 1750 has
ecological species composition typical of montane cloud
forests, with a high tree fern incidence (a good indicator of
cloud immersion zone), a high occurrence of Weinmannia
spp. (e.g. W. lechlietiana, W. pinnata), and the prevalence of
stem-covering bryophytes (A. Horwath, pers comm. 2012).

The climate of both plots is characterised by very
high rainfall (5300 mm year⁻¹), no distinct dry season,
and periods of cloud immersion. Cloud base is lowest
in the austral winter/dry season (May–July) and rises in
the austral summer/wet season (K. Halladay 2012, pers
comm.). Relative humidity (RH) is highest in austral win-
ter, owing to an increased frequency of cloud immersion
because of lower cloud base altitude; this reduces to a min-
imum in September as cloud base height increases and
before the onset of the wet season. On a diurnal basis, cloud
base altitude decreases from morning to afternoon as a
result of moist upslope flow from the lowlands (K. Halladay
2012, pers comm.). Hence in the austral winter these plots
are occasionally immersed in cloud, with a larger degree of
immersion in the higher elevation plot. This proximity to
the cloud base zone (which may be expected to rise under
global warming) makes these sites particularly interesting for ecological monitoring.

The soils in both plots are umbrisols, ca. 67 cm deep, with an organic layer of ca. 30 cm (Table 1). The soils are highly acidic (pH 4.0; Zimmerman et al. 2009), overlaying a late Permian granite intrusion bedrock. The vegetation is closed canopy forest with a relatively low mean canopy height (estimated as height of trees with diameter at breast height (DBH) > 40 cm, 18 ± 3 m for SP 1500, and 20 ± 3 m for SP 1750) and moderately high plant species diversity of trees >10 cm DBH (211 species in SP 1500, and 177 species in SP 1750). There were few differences between soil types, chemistry or physical characteristics between the two plots.

Meteorological data
Solar radiation, air temperature, humidity and precipitation time series were collected from an automatic weather station (AWS) installed in a clearing ca. 1 km from SP 1500. The monthly time series were then gap-filled. For solar radiation, the monthly mean value for each missing month was used to gap-fill. For temperature, daily values from a nearby Senamhi (Peruvian Meteorological Service) station at Acjancaco (13.20° S, 71.62° W) were regressed against daily values from the AWS to correct for the difference between these two stations. The monthly temperature time series was then gap-filled with corrected values from the Senamhi station. RH was calculated from wet and dry bulb temperatures, also from Acjancaco and measured at 07.00 h, 13.00 h and 19.00 h (local time) which were not adjusted. Any temperature or RH values that were still missing after gap-filling with Senamhi data were filled using monthly means from the partially filled time series. The precipitation time series was gap-filled by using values from the Senamhi station Acjancaco at 07.00 h and 19.00 h (local time) which were not adjusted. If fewer than the maximum possible number of daily values were available, the monthly value was considered to be missing. Where these data were missing, monthly values from the nearest grid point of the TRMM (Tropical Rainfall Measuring Mission) 3B43 product were used. Maximum climatic water deficit (MCWD), a measure of dry season intensity, was calculated, using the gap-filled monthly time series for precipitation according to the equations listed in Aragão et al. (2007).

Carbon fluxes
The protocols used to estimate ecosystem C flux components were largely based on those developed by the RAINFOR–GEM network. A detailed description is available online for download (http://gem.tropicalforests.ox.ac.uk) and in the online supplementary material accompanying this paper. Summaries of the different components quantified, and the field methods and data processing techniques used are presented in Tables 2 and 3, respectively.

Net primary productivity
All major NPP components were measured for this study in each of 25 subplots in each plot. We calculated above- and below-ground NPP, NPP_{AG} and NPP_{BG}, respectively, using the following equations:

\[NPP_{AG} = NPP_{ACW} + NPP_{litter fall} + NPP_{branch turnover} + NPP_{herbivory} \]

\[NPP_{BG} = NPP_{fine roots} + NPP_{coarse roots} \]

This neglects several small NPP terms, such NPP lost as volatile organic emissions, litter decomposed in the canopy, or dropped from ground flora below the litter traps. Total R_a is estimated as:

\[R_a = R_{leaves} + R_{stems} + R_{rhizosphere} \]

Here we count root exudates and transfer to mycorrhizae as a portion of R_{rhizosphere} rather than as NPP. In quasi-steady state conditions (and on annual timescales or longer where there is no net change in plant non-structural carbohydrate storage), GPP should be approximately equal to plant carbon expenditure (PCE). Hence, we estimated GPP on the control plot as:

\[GPP = NPP_{AG} + NPP_{BG} + R_a \]

Using these data, we estimated the CUE as the proportion of total GPP/PCE invested in total NPP:

\[CUE = (NPP_{AG} + NPP_{BG})/(NPP_{AG} + NPP_{BG} + R_a) \]

Statistical analysis and error estimation
Repeated-measures analysis of variance (ANOVA) was used to test for significant seasonal shifts in ecosystem carbon components between plots. In addition, a student’s t-test assessed mean annual differences between the two plots. Repeated-measures ANOVA was used to test both for significant seasonal shifts in NPP_{ACW} measured every few months since 2009, between plots. In addition, a student’s t-test assessed mean annual differences between the two plots.

All estimated fluxes reported in this study are in Mg C ha^{-1} year^{-1}, and all reported errors show ± 1 SE. Errors were propagated by taking the square root of the sum of squared absolute errors for addition and subtraction, and relative errors for division and multiplication (Taylor et al. 1997; Malhi et al. 2009; Hughes and Hase 2010). This assumes that uncertainties are independent and normally distributed.

A key consideration is assignment and propagation of uncertainty in our up-scaling of measurements. There are
Table 2. Methods for intensive monitoring of carbon dynamics from the SP 1500 and SP 1750 permanent forest plots in the Kosñipata National Park, Cusco, Peru (see also online supplemental material and RAINFOR-GEM manual 2012).

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Sampling period</th>
<th>Sampling interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above-ground net primary productivity</td>
<td>2007–2011 (SP 1500)</td>
<td>Every year (trees ≥ 10 cm DBH)</td>
</tr>
<tr>
<td>Branch turnover net primary productivity</td>
<td>2009–2011</td>
<td>Every 3 months</td>
</tr>
<tr>
<td>Litterfall net primary productivity</td>
<td>2007–2009</td>
<td>Every 14 days</td>
</tr>
<tr>
<td>Leaf area index (LAI)</td>
<td>2009–2010</td>
<td>Every month</td>
</tr>
<tr>
<td>Loss to leaf herbivory</td>
<td>2008</td>
<td>Every 2 months</td>
</tr>
<tr>
<td>Below-ground net primary productivity</td>
<td>n/a</td>
<td>Not directly measured</td>
</tr>
<tr>
<td>Coarse root net primary productivity</td>
<td>2007–2011 (SP 1500)</td>
<td>Every 3 months</td>
</tr>
<tr>
<td>Fine root net primary productivity</td>
<td>2009–2011 (SP 1750)</td>
<td>Every 6 months (trees 2.5–10 cm DBH)</td>
</tr>
</tbody>
</table>
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Sampling period</th>
<th>Sampling interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotrophic and heterotrophic respiration (R_a and R_h)</td>
<td>Total soil CO2 efflux ($R{soil}$)</td>
<td>2007–2011 (SP 1500)</td>
<td>Every month</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009–2011 (SP 1750)</td>
<td></td>
</tr>
<tr>
<td>Soil CO2 efflux partitioned into autotrophic ($R{rhizosphere}$) and heterotrophic ($R_{soilhet}$) components</td>
<td>We installed soil respiration partitioning experiments at each corner of the plot. In each corner, we installed three short collar tubes (10 cm depth) to measure total soil respiration and three long collar tube (40 cm depth) to exclude root and mycorrhizae respiration (R_a). Each of the three tubes were allocated different litter layer treatments (normal litter, no litter, double litter). A control experiment was carried out at the centre of each plot in order to assess the effects of root severing and soil structure disturbance that occurs during installation.</td>
<td>Feb 2009–Jun 2011</td>
<td>Every month</td>
</tr>
<tr>
<td>Canopy respiration (R_{leaves})</td>
<td>In each plot, leaf dark respiration and photosynthesis at PAR levels of 1000 µmol m$^{-2}$ s$^{-1}$ were recorded for 15–25 trees with an IRGA and specialised cuvette (CIRAS 2 IRGA with PLC6 leaf cuvette; PP Systems, Hitchen, UK). For each tree, we randomly selected one branch, each from sunlit and shaded portions of the canopy and immediately re-cut the branches underwater to restore hydraulic connectivity (Reich et al. 1998).</td>
<td>Nov 2010 and Jul 2011</td>
<td>Once in dry season, once in wet season</td>
</tr>
<tr>
<td>Above-ground live wood respiration (R_{stems})</td>
<td>Bole respiration was measured using a closed dynamic chamber method, from 25 trees distributed evenly throughout each plot at 1.3 m height with an IRGA (EGM-4) and soil respiration chamber (SRC-1) connected to a permanent collar, sealed to the tree bole surface.</td>
<td>Mar 2009–Dec 2010</td>
<td>Every month</td>
</tr>
<tr>
<td>Coarse root respiration ($R_{coarse} roots$)</td>
<td>This component of respiration was not measured directly.</td>
<td>n/a</td>
<td>Not directly measured</td>
</tr>
</tbody>
</table>

two primary types of uncertainty. First, there is the sampling error associated with spatial variation in the variables measured. Examples include the variability among litter traps, or among fine root ingrowth cores. Second, there is measurement uncertainty due to equipment functioning, measurement accuracy and, particularly, scaling localised measurement to tree and plot-level estimates. Here we assume that most NPP terms are measured fairly precisely and sampled without large biases, and hence NPP error is dominated by sampling uncertainty, which can be reliably estimated assuming a normal distribution. In contrast, we believe that the main R_a terms include a large measurement and scaling uncertainty, though these are very difficult to directly quantify. For these, we made explicit and conservative estimates of the combined measurement/scaling uncertainty for these components in Table 4. Some components were not directly measured at the site over the study period but were estimated from literature syntheses $R_{coarse roots}$, NPP$_{coarse roots}$).

Results

We consistently report results from 1500 m first, followed by those from 1750 m, and for brevity we separate the two values by an oblique sign (/).

Abiotic environmental parameters

The average annual rainfall was very high (5302 mm), amongst the highest reported for any research site in
Table 3. Data analysis techniques for intensive monitoring of carbon dynamics from the SP 1500 and SP 1750 permanent montane forest plots in the Koshiyata national park, Cusco, Peru (see also online supplemental material and RAINFOR-GEM manual 2012).

<table>
<thead>
<tr>
<th>Component</th>
<th>Data processing details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above-ground net primary productivity (NPP_{AG})</td>
<td>\text{Biomass calculated using the Chave et al. (2005) allometric equation for tropical moist forests: } AGB = 0.0776 \times (\rho \text{ dbh}^2 H)^{0.94}, \text{ where AGB is above-ground biomass (kg), } \rho \text{ is density of wood (g cm}^{-3}), D \text{ is DBH (cm), and } H \text{ is height (m). To convert biomass values into carbon, we assumed that dry stem biomass is 47.3% carbon (Martin and Thomas 2011). Where height data were not available, it was estimated by applying the Feldpausch et al. (2011) allometric equation.}</td>
</tr>
<tr>
<td>Above-ground coarse wood net primary productivity (NPP_{ACW})</td>
<td>\text{See RAINFOR-GEM manual (2012, p. 61) for description of decomposition status and surface area formulas.}</td>
</tr>
<tr>
<td>Branch turnover net primary productivity (NPP_{branch turnover})</td>
<td>\text{NPP}{\text{litterfall}} \text{ was determined as:} \text{NPP}{\text{litterfall}} = \text{NPP}_{\text{canopy}} - \text{Loss to leaf herbivory. Litterfall was separated into its components, oven dried at 80 °C to constant mass and weighed. Litter was estimated to be 49.2% carbon, based on mean Amazonian values (S. Patiño, unpublished analysis).}</td>
</tr>
<tr>
<td>Litterfall net primary productivity (NPP_{litterfall})</td>
<td>\text{Leaf area index (LAI) estimated using true LAI output from the CAN-EYE software which account for clumping of foliage, and assuming a fixed leaf inclination angle of 42.5°, based on mean estimates from ESP. Leaves were separated into sunlit and shaded fractions using the following equation: } F_{\text{sunlit}} = (1-\exp(-K^{*}\text{LAI})) / K \text{ where } K \text{ is the light extinction coefficient, and } F_{\text{sunlit}} \text{ is the sunlit leaf fraction (Doughty and Goulden 2008). The model assumptions are randomly distributed leaves, and } K = 0.5 \cos(Z), \text{ where } Z \text{ is the solar zenith angle, which was set to 30° in this study.}</td>
</tr>
<tr>
<td>Loss to leaf herbivory (NPP_{herbivory})</td>
<td>\text{The fractional herbivory (H) for each leaf was calculated as: } H = (A_{lh} - A_{h}) / A_{lh}, \text{ where } A_{h} \text{ is the area of each individual leaf including the damage incurred by herbivory and } A_{lh} \text{ is the leaf area prior to herbivory. The mean values of } H \text{ were calculated across all leaves collected both per litterfall trap and per plot.}</td>
</tr>
<tr>
<td>Below-ground net primary productivity (NPP_{BG})</td>
<td>\text{See RAINFOR-GEM manual (Version 2.2, 2012, p.47) for description and range of root:shoot ratio.}</td>
</tr>
<tr>
<td>Coarse root net primary productivity (NPP_{coarse roots})</td>
<td>\text{Roots were manually removed from the soil samples in four 10 min time steps, according to a method that corrects for underestimation of biomass of hard-to-extract roots (Metcalfe et al. 2007) and used to predict root extraction beyond 40 min (up to 100 min); we estimate that there was an additional 34% correction factor for fine roots not collected within 40 minutes. No correction was applied for fine root productivity below 30 cm.}</td>
</tr>
<tr>
<td>Fine root net primary productivity (NPP_{fine roots})</td>
<td>\text{Soil surface temperature (T260 probe, Testo Ltd., Hampshire, UK) and moisture (Hydrosense probe, Campbell Scientific Ltd., Loughborough, UK) were recorded at each point after efflux measurement.}</td>
</tr>
<tr>
<td>Total soil CO2 efflux (R${soil}$)</td>
<td>\text{The partitioning experiment allows estimation of the relative contributions of (1) surface organic litter, (2) roots, (3) mycorrhizae and (4) soil organic matter to total soil CO$_2$ efflux. Contributions are estimated from differences between collars subjected to different treatments, in excess of pre-existing spatial variation.}</td>
</tr>
<tr>
<td>Soil CO2 efflux partitioned into autotrophic (R${diss}^{\text{aut}}$) and heterotrophic (R$_{diss}^{\text{het}}$) components</td>
<td>\text{To scale to whole-canopy respiration, mean dark respiration for shade and sunlit leaves were multiplied by the respective estimated fractions of total LAI. The wet season respiration mean was applied to all months with >100 mm rain; the dry season months, measured dry season respiration was linearly scaled by the soil moisture saturation to allow for more continuous variation of leaf respiration. To account for daytime light inhibition of leaf dark respiration, we applied an inhibition factor: 67% of daytime leaf dark respiration, 34% of total leaf dark respiration (Malhi et al. 2009). These were calculated by applying the Atkin et al. (2000) equations for light inhibition of leaf respiration to a plot in Tapajos forest in Brazil (Malhi et al. 2009; Lloyd et al. 2010).}</td>
</tr>
<tr>
<td>Canopy respiration (R$_{leaves}$)</td>
<td>\text{Estimated by multiplying measured above-ground live wood respiration by 0.21.}</td>
</tr>
<tr>
<td>Canopy respiration (R$_{canopy}$)</td>
<td>\text{To estimate plot-level stem respiration tree respiration per unit bole area was multiplied by bole surface area index (SAI) for each tree, estimated with the following equation (Chambers et al. 2004): } log_{10}(SAI) = -0.105 - 0.686 \log(DBH) + 2.208 \log(DBH)^2 - 0.627 \log(DBH)^3, \text{ where } H \text{ is tree height, and DBH is bole diameter at 1.3 m height. Finally, for all 25 trees together we regressed mean annual bole respiration against total annual growth.}</td>
</tr>
<tr>
<td>Above-ground live wood respiration (R$_{stem}$)</td>
<td>\text{Estimated by multiplying measured above-ground live wood respiration by 0.21.}</td>
</tr>
<tr>
<td>Coarse root respiration (R$_{coarse roots}$)</td>
<td>\text{Estimated by multiplying measured above-ground live wood respiration by 0.21.}</td>
</tr>
</tbody>
</table>
temperatures were found in the austral winter (May–July), \(\geq 20^\circ\)C (June–August) and highest productivity recorded over sum-mer, a consequence of high rainfall and low evapotranspiration rates. The maximum climatological water deficit was zero, with no evidence of seasonal water stress.

Amazonia (Figure 1) – this value is higher than those previously reported for this site (e.g. in Girardin et al. 2010), a result of the more complete and gap-filled dataset. The high rainfall at the base of the Andes in this region occurs because of the convergence of warm, moist air from lowland Amazonia with cold katabatic flows down the slopes of the Andes, forming a frontal rain system and resulting in peaks of rainfall in the early morning (Killeen et al. 2007; Rapp and Silman 2012). In the peak of the wet sea-son, low in winter). Solar radiation seasonality is mainly explained by the seasonality of cloud cover, the forest is immersed in the cloud base during the winter months result-ing in a strong solar radiation minimum in June (Figure 1). The average annual air temperature was 18.8 ± 0.02 °C (1500 m) and 17.43 ± 0.02 °C (1750 m), usually with <5 °C diurnal and seasonal variation around this mean. Lowest temperatures were found in the austral winter (May–July), a result of occasional incursions of cold air from the south and also frequent cloud immersion. Soil moisture showed very little seasonal variation and was high throughout the year, a consequence of high rainfall and low evapotranspiration rates. The maximum climatological water deficit was zero, with no evidence of seasonal water stress.

Carbon stocks and net primary productivity components

Above-ground coarse woody biomass and NPP_{ACW}

We estimated total above-ground biomass at 66.89/93.54 Mg C ha⁻¹ for large trees (>10 cm dbh) and 5.17/5.28 Mg C ha⁻¹ for small trees (<10 cm dbh). Hence, total stand level above-ground biomass was 72.05/98.82 Mg C ha⁻¹

The average NPP_{ACW} from large trees (>10 cm) was greater at 1500 m than at 1750 m (2.89 ± 0.29/1.72 ± 0.17 Mg C ha⁻¹ year⁻¹, Table 4). That from small trees was smaller at 1500 m than at 1750 m (0.04 ± 0.003/0.15 ± 0.02 Mg C ha⁻¹ year⁻¹). Hence, total estimated NPP_{ACW} was 2.93 ± 0.29 at 1500 m and 1.87 ± 0.17 at 1750 m.

Both plots displayed a clear seasonal pattern of NPP_{ACW} with a broad minimum in stem productivity observed during the coolest and low-cloud base period (June–August) and highest productivity recorded over sum-mer (Figure 2). To estimate the effect of moisture expansion during the wet season on tree growth, we separated the trees with almost no annual growth (NPP_{ACW} < 0.05 kg C tree⁻¹ year⁻¹) from those with NPP_{ACW} > 0.05 kg C tree⁻¹ year⁻¹.
year$^{-1}$, $N = 106$ at 1500 m, $N = 81$ at 1750 m) and measured their seasonal trends. We estimated that the seasonal effect of moisture expansion during the winter (April–November) was marginally lower at 1500 m (0.002 Mg C ha$^{-1}$ year$^{-1}$) than at 1750 m (0.019 Mg C ha$^{-1}$ year$^{-1}$). Even after correcting for moisture expansion, there was a moderately strong seasonality in both plots, ranging from 0.18 ± 0.01 to 0.28 ± 0.02 Mg C ha$^{-1}$ month$^{-1}$ at SP 1500, and from 0.12 ± 0.01 to 0.17 ± 0.01 Mg C ha$^{-1}$ month$^{-1}$ at SP 1750. We estimated stem biomass residence times of 24/53 years by dividing above-ground live coarse woody (ACW) biomass by NPP_{ACW}. These estimates are at the lower range of values (27.54–102.05 years) reported from old-growth forests in South American lowland Amazonia (Malhi et al. 2004; Keeling and Phillips 2007; da Costa et al. 2010; Galbraith et al. 2013).

Canopy net primary productivity (NPP_{canopy}). NPP_{canopy} was greater at 1500 m than at 1750 m ($P < 0.001$, 5.99 ± 0.22/3.94 ± 0.24 Mg C ha$^{-1}$ year$^{-1}$), with low within-plot variability. This difference was principally driven by NPP_{leaves}. Twigs, bromeliads and reproductive components (flower and fruit) showed no difference between plots. NPP_{canopy} was mainly allocated to leaves (77%/75%).
Figure 2. Sum of the monthly collections from 25 litter traps of total fine litterfall, fruit, flower, twigs, branch, leaves NPP (Mg C ha$^{-1}$ month$^{-1}$) for SP 1500 (black circles, 2007–2011) and SP 1750 (grey squares, 2009–2011), San Pedro, Peruvian Andes. Error bars show ±1 SE.

The remaining canopy productivity was allocated to twigs (13%/15%), reproductive organs (7%/5%), and lost to herbivory (12%/12%).

Total litterfall showed evidence of seasonality at both sites, with a peak in litterfall coinciding with the transition season (August–October), at the peak of solar radiation (Figures 1 and 3). Peak litterfall rates were 0.6/0.8 Mg C ha$^{-1}$ month$^{-1}$ (September) and dropped to 0.21/0.39 Mg C ha$^{-1}$ month$^{-1}$ at the end of the austral summer. Leaf, twig, and reproductive organ litterfall showed evidence of a weak seasonal peak towards the end of the austral winter (August–December) and at the start of winter (March–April). Leaf and flower litterfall showed a similar peak in August–October, although flower fall also showed a smaller secondary peak at one site in March. Fruit litterfall showed two smaller peaks, one in the March–May transition and in the August–October transition (periods of highest sunshine). Twig fall was at a minimum in the austral winter, and showed a strong peak from January–March. Austral winter is the period of lowest cloud base...
heights and most frequent cloud immersion, whereas cloud base heights are frequently above the mountains in the austral summer. Hence the broad maximum of all litterfall components at both San Pedro plots coincides with the end of the low-cloud immersion period and the peak in solar radiation levels. Seasonal amplitude (max – min) of NPP_{canopy} is more pronounced at SP 1750, consistent with the hypothesis that this upper site experiences greater cloud immersion.

Herbivory. We recorded a mean herbivory fraction of $16.0 \pm 0.2/15.9 \pm 0.1\%$. Correcting the measured NPP_{leaves} in both plots according to this fraction, we estimated an NPP loss to leaf herbivory of $0.66 \pm$
Leaf area index and leaf production. The leaf area index (LAI) in SP 1500 (not shown) showed a weak seasonal trend, averaging 4.72 ± 0.20 m² m⁻² in the austral winter (June–October), and 5.25 ± 0.20 m² m⁻² in the austral summer. In SP 1750, LAI was not seasonal, ranging from 5.02 ± 0.21 in the austral winter to 5.20 ± 0.19 m² m⁻² in the austral summer. Annual LAI averaged 4.93 ± 0.20/5.09 ± 0.20 m² m⁻². In both plots, leaf shedding (litterfall) began in August/September, matched by a decline in LAI. Leaf shedding peaked in September and LAI reached a minimum shortly after, in October. Thereafter, leaf shedding decreased as LAI increased, indicating the production of new leaves.

Fine root net primary production (NPP\textsubscript{fine roots}). Fine root growth showed a strongly seasonal cycle, different to that of stem and canopy productivity, with highest growth in the austral summer in both plots, decreasing by 52%/41% from February–July (Figure 4). Total fine root productivity was higher at the lower elevation plot, averaging 1.89 ± 0.30/1.22 ± 0.23 Mg C ha⁻¹ year⁻¹ at SP 1500/SP 1750 (Table 4).

Annual coarse root productivity (NPP\textsubscript{coarse roots}). Annual coarse root productivity was estimated as a fraction of above-ground productivity. Hence, we report significantly higher coarse root production at SP 1500 than SP 1750 (0.61 ± 0.06/0.36 ± 0.04 Mg C ha⁻¹ year⁻¹). Measurements over 2 years indicated a strong seasonal pattern in both plots, with root growth significantly greater in January than in July (P < 0.001, Figure 4).

In both plots, NPP\textsubscript{fine roots} peaked at the height of summer (January/April) and declined over the austral winter, following the seasonality trend of NPP\textsubscript{ACW}.

Seasonality of NPP. Figure 5 shows the seasonal budget of NPP and its components. At SP 1500, the overall growth rate remained relatively constant throughout the year, ranging from 1.03 ± 0.10 to 1.39 ± 0.11 Mg C ha⁻¹ month⁻¹. NPP\textsubscript{total} decreased slightly at the end of the austral winter. At SP 1750, there was a strong seasonal signal of the overall growth rate: total NPP is driven by NPP\textsubscript{interfall} seasonality and matches solar radiation seasonality. Overall growth rates decreased during the austral winter, peaking at the start of summer, when solar radiation is high.

Autotrophic and heterotrophic respiration

Total soil CO₂ efflux. Below-ground, total mean annual autotrophic respiration was significantly higher at SP 1500, mainly driven by a difference in R\textsubscript{rhizosphere} (Table 4). Total soil respiration had a significant (P < 0.001) seasonal cycle and was lowest during the austral winter at both sites averaging 1.07/0.83 Mg C ha⁻¹ month⁻¹ (May–September) and increased to 1.30/1.02 Mg C ha⁻¹ month⁻¹ during the austral summer (Figure 6).

Autotrophic and heterotrophic components of soil respiration (R\textsubscript{a} and R\textsubscript{h}). We calculated the average respiration fraction attributable to the rhizosphere by using the results of the respiration partitioning experiment (Table 2). Monthly values of tubes excluding rhizosphere respiration (40 cm depth) were subtracted from monthly values of tubes including rhizosphere and heterotrophic respiration (10 cm depth). Mean monthly absolute values of root respiration accounted for 65%/58% of soil respiration. This fraction varied seasonally, averaging 62%/54% from June–October and 67%/61% for the rest of the year. Total rhizosphere respiration had a significant seasonal cycle (P < 0.001) and was lowest between May and September at both sites, averaging 0.69/0.49 Mg C ha⁻¹ month⁻¹ and 0.86/0.59 Mg C ha⁻¹ month⁻¹ during the rest of the year. Total mean annual rhizosphere respiration was higher (P < 0.001) at SP 1500 than SP 1750 (Table 4). Total heterotrophic soil respiration had a significant seasonal cycle (P < 0.001) and was lowest between March and September at both sites averaging 0.38/0.34 Mg C ha⁻¹ month⁻¹ and 0.43/0.44 Mg C ha⁻¹ month⁻¹ during the rest of the year (Figure 6). Total mean annual soil respiration was higher (P < 0.001) at SP 1500 than SP 1750 (Table 4).

To control for the effect of the mixing of the soil on our partitioning experiment, we investigated the effect of a disturbance on soil cores. Total soil respiration for the undisturbed SP 1500 cores were significantly lower (P < 0.01), increasing by 18% from an average of 2.22 ± 0.11 µmol m⁻² s⁻¹ to 2.69 ± 0.12 µmol m⁻² s⁻¹ for the disturbed cores. At SP 1750, there was no significant difference (P > 0.05) between the undisturbed cores (3.45 ± 0.15 µmol m⁻² s⁻¹) and the disturbed cores (3.58 ± 0.15 µmol...
Canopy respiration. Although we observed a mild seasonal cycle, sunlit leaf dark respiration measurements showed a significant difference between plots during June, but not October (Table 5). Similarly, shaded leaf dark respiration measurements showed no significant difference between plots in either season. Sunlit leaves showed significant seasonality, with higher respiration in winter. We did not find a significant relationship ($P > 0.05$) between stem NPP and dark leaf respiration. Light-saturated sunlit leaf photosynthesis showed significant seasonality.

There was no strong seasonality in canopy respiration. Mean monthly canopy respiration was estimated at 0.82/0.76 Mg C ha$^{-1}$ month$^{-1}$ between May and September and at 0.92/0.85 during the rest of the year (not shown). We multiplied our results by a factor of 0.67 to correct for light inhibition of daytime respiration. Total mean annual canopy respiration was higher at SP 1500 than SP 1750 (Table 5).

Above-ground live coarse woody respiration (R_{acw}). Total ACW surface area of large trees (>10 cm DBH) was estimated at 17,427/21,349 m2 ha$^{-1}$, with a height adjustment to the Chambers equation of 0.72/0.80 (Robertson et al. 2010). Total ACW surface area of small trees (<10 cm
Table 5. Leaf dark respiration values (µmol m⁻² s⁻¹), by season and by leaf position (sun vs. shade) in two tropical montane forest plots at San Pedro (SP 1500 and SP 1750), Cusco, Peru, 2010. Dry season is from May to September, wet season is from October to April. These respiration values are the values the leaf would respire theoretically at the mean annual temperature of the site (12.5 °C). Significance between plots is denoted by: *, P < 0.05; **, P < 0.01; ***, P < 0.001.

<table>
<thead>
<tr>
<th></th>
<th>Winter sun</th>
<th>Winter shade</th>
<th>Summer sun</th>
<th>Summer shade</th>
<th>Winter max photosynthesis</th>
<th>Summer max photosynthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1750</td>
<td>0.69 ± 0.07</td>
<td>0.37 ± 0.04</td>
<td>0.61 ± 0.07</td>
<td>0.47 ± 0.07</td>
<td>7.95 ± 0.47</td>
<td>5.78 ± 0.82</td>
</tr>
<tr>
<td>SP1500</td>
<td>0.43 ± 0.05</td>
<td>0.32 ± 0.05</td>
<td>0.71 ± 0.09</td>
<td>0.48 ± 0.10</td>
<td>6.38 ± 0.36</td>
<td>5.15 ± 0.46</td>
</tr>
</tbody>
</table>

DBH) was 1378/1506 m² ha⁻¹. This summed to a total ACW area of 18,805/22,728 m² ha⁻¹. Based on this result, we estimated an ACW area index (SAI) of 1.80/1.99.

To scale R_{stem} measurements to the plot level, we established a relationship between NPP_{ACW} and R_{stem} for the 25 trees sampled. We found that the trees measured for R_{stem} grew faster than average; hence we reduced our estimates for respiratory fluxes by 12% at both plots when scaling to 1 ha. We then multiplied total plot ACW surface area by our scaled ACW respiration fluxes (Figure 7). There was a significant seasonal cycle in wood respiration at both sites ($P < 0.001$). However, the seasonal cycle was not obviously related to precipitation seasonality, with respiration peaking in summer at SP 1500 and at the start of austral winter and in the austral summer at SP 1750 (Figure 7). There was no significant difference between the sites when compared on a monthly timescale ($P > 0.05$). Annual R_{stem} was significantly greater ($P < 0.05$) at 1500 m than at 1750 m, averaging 8.91 ± 2.82/9.70 ± 3.07 Mg C ha⁻¹ year⁻¹ for all our measurements.

Overall carbon budget

We found a number of significant differences in the carbon cycle between the two plots (Table 4, Figure 8). Canopy, stem and fine root NPP were significantly higher at SP 1500 than at SP 1750. As a result, total NPP was 1.5 times higher at SP 1500 than SP 1750, averaging 11.94 ± 0.47/7.92 ± 0.38 Mg C ha⁻¹ year⁻¹. In terms of CO₂ efflux, leaf, stem and rhizosphere respiration were higher at SP 1500. As a result, R_a was significantly higher at SP 1500 than at SP 1750 (26.63 ± 4.10/24.40 ± 4.01 Mg C ha⁻¹ year⁻¹). The high NPP and R_a values drove our estimate of GPP up at SP 1500 (38.57 ± 4.13/32.33 ± 4.03 Mg C ha⁻¹ year⁻¹), a difference of 6.24 Mg C ha⁻¹ year⁻¹. CUE was 1.2 higher at SP 1500 than SP 1750, averaging 0.31 ± 0.04/0.25 ± 0.03 Mg C ha⁻¹ year⁻¹.

Discussion

Intensive plots monitoring: seeking a comprehensive approach to quantifying the carbon budget

The two San Pedro plots we focused on in this study are part of a network of intensive carbon-monitoring plots in which we have measured all the main components of NPP and respiration (autotrophic and heterotrophic) to improve our mechanistic understanding of the internal components of the carbon cycle and how they interact with environmental variables. This paper presents the first complete measurements of the main components of NPP, respiration and their variation over a seasonal cycle in two tropical montane forest plots located at the base of the cloud immersion zone. A detailed time series of these components collected over 3–5 years (Table 2) allowed us to present the first in-depth study of seasonal variation of the carbon budget at the base of a montane forest cloud immersion zone. Our approach of intensive carbon cycling monitoring provides a complete overview of the carbon cycle: we provide a ‘bottom-up’ estimate of GPP by summing the rate of carbon assimilated into biomass (NPP) and emitted through autotrophic respiration (R_a). Although these two plots are located within 1 km of each other, they differ in terms of biomass, NPP and GPP. Despite the difference in total NPP between the two plots, we found no variation in allocation of NPP to canopy (50%/50%), above- and below-ground coarse wood (34%/35%) and fine roots (15%/15%) between the two plots (Table 6). Thus, for a given NPP component, the same fraction of NPP was allocated in both plots, although growth was substantially slower at SP 1750. These results can be compared with the conclusions of a review of NPP allocation from 35 tropical forest sites, in which Malhi et al. (2011) reported that NPP allocation to the canopy remained relatively invariant in all sites (ca. 25–45%). Nonetheless, the canopy allocation reported here is larger than the pantropical mean reported by Malhi et al. (2011); this is partially explained by the inclusion of herbivory to our NPP_{canopy}, as NPP allocated to the canopy without herbivory was 45%/44%, towards the upper end of the range reported by Malhi et al. (2011).

The NPP_{total} reported here is significantly higher than our previous estimates from SP 1500 (7.06 ± 0.44 Mg C ha⁻¹ year⁻¹) (Girardin et al. 2010), a difference driven by NPP_{canopy} (which now includes herbivory), $NPP_{ACW<10cm}$ (now directly measured), $NPP_{branch turnover}$ (now directly measured) and $NPP_{fine roots}$ (now corrected for root depth). The R_a and R_g values reported here also take precedence over our previous estimates, as they are directly measured from a partitioning experiment. A more complete intensive measurement regime, combined with inter-annual variability may explain an increase in NPP (and hence GPP) estimates between studies, hence the values reported here take precedence over our previously reported estimates (Girardin et al. 2010; Malhi 2012). We are fairly confident
that NPP terms and R_{soil} are measured precisely and sampled without large biases. The uncertainty associated with these components is sampling uncertainty, a term which can be reliably estimated (Table 4). The largest sources of uncertainty in our measurement approach are associated with leaf respiration (both daytime inhibition and scaling) and stem respiration (scaling from point measurements to the whole stem surface), both of which feed through to higher uncertainty in autotrophic respiration. The issues surrounding scaling of leaf and stem respiration certainly warrant further research.

Seasonal trends and climatic drivers of NPP and R_a components

We quantified the seasonal budget of each NPP component in both plots (Figure 5). Here, we assumed that the peak in canopy production was synchronised with the peak in litterfall ($NPP_{litterfall}$), a feature which has been demonstrated in several sites in lowland Amazonia (Doughty and Goulden 2008; Malhi et al. 2014) but which we cannot yet confirm at this site. SP 1500 showed high seasonality in ACW, fine roots and fine litter NPP as reported for most forests located below the cloud base.
SP 1750 showed the low seasonality of stem and root NPP typically observed in montane cloud forests and a marked seasonality in NPP_canopy typical of lower elevation forests (C. Girardin 2013, pers comm.). We observed little seasonality in soil R_a and even less seasonal amplitude in R_h. Nonetheless, R_a increased gradually during the austral summer and decreased in the winter, indicating a close relationship between R_a and NPP rates (Figures 2, 4 and 6). The seasonal trend of R_a further suggests that trees invest more in biomass productivity in the cooler and darker season and more in maintenance during the warmer and high solar radiation incidence period. We lack information to accurately quantify the seasonal cycle of CUE. However, our data on the seasonal trends of NPP and R_a imply that CUE is likely to show no or low seasonality in both plots.

We presented the first detailed seasonal dataset of NPP_canopy and its components from a lower tropical montane cloud forest, allowing for interesting insights on the phenology of these lower cloud forests. The investment in photosynthetic material during the austral summer (high light incidence) may be explained by a direct need for light, or a reduction leaf pathogens pressure under drier and warmer conditions. The results presented here lead us to infer that canopy, stem and fine root productivity respond to variations in solar radiation over the year. These two plots provide a good example of a site where water availability is not a limiting factor: in forests where moisture is not a limiting factor, the phenology of the canopy responds to light availability, with increasing allocation to reproductive organs when light is in abundance (C. Girardin 2013, pers comm.).

| Table 6. Carbon allocation to above- and below-ground components of NPP and partitioning of respiration components in two San Pedro plots (SP 1500 and SP 1750), Peru, 2009–2010. All values other than above- and below-ground carbon are fractions. SE is standard error of the mean. |
|----------------------------------|-----------------|-----------------|
| Total carbon allocation | SP1500 mean (+/− SE) | SP1750 mean (+/− SE) |
| Above-ground carbon (Mg C ha⁻¹ year⁻¹) | 25.42 (1.62) | 22.60 (1.38) |
| Below-ground carbon (Mg C ha⁻¹ year⁻¹) | 13.15 (1.10) | 9.72 (0.80) |
| Above-ground fraction | 0.66 (0.05) | 0.70 (0.05) |
| Below-ground fraction | 0.34 (0.03) | 0.30 (0.03) |
| **Allocation of NPP** | | |
| Canopy | 0.50 (0.04) | 0.50 (0.05) |
| Above-ground coarse wood | 0.34 (0.07) | 0.35 (0.07) |
| Fine roots | 0.16 (0.03) | 0.15 (0.03) |
| **Partitioning of autotrophic respiration** | | |
| Canopy | 0.27 (0.05) | 0.27 (0.04) |
| Wood | 0.40 (0.05) | 0.48 (0.06) |
| Rhizosphere | 0.33 (0.05) | 0.25 (0.03) |
How does the base of the cloud cover impact annual carbon budgets (NPP, R_a, GPP and CUE)?

A comparison of the overall carbon budget of these two San Pedro plots with lowland Amazonia shows that the absolute values of the main NPP components (ACW, fine litter and fine roots) at SP 1500 are comparable with values reported from fertile lowland Amazonian rainforests (Nepstad 2002; Chave et al. 2008; Malhi et al. 2008; Aragao et al. 2009; Malhi et al. 2014; Pasquell et al. 2014), although those of SP 1750 are closer to NPP estimates reported from montane forests (Girardin et al. 2014). We found a number of significant differences in the carbon cycle between the two plots. NPP_{ACW}, NPP_{canopy}, NPP_{fine roots} and R_a were significantly higher at SP 1500 than at SP 1750, resulting in a 25% decrease in GPP over a 250 m elevation increase (1.37 °C decrease in temperature). Soil characteristics did not differ significantly between the two plots, hence differences in the carbon cycle between the two plots cannot be attributed to soil characteristics. Mean wood density was lower in the lower elevation plot (0.55 ± 0.01/0.61 ± 0.008 g cm⁻³ ha⁻¹) (W. Farfán 2012, pers. comm.). SPD 1500 had wood density values more typical of the lowland sites, whereas SPD 1750 had values more typical of the cloud forest zone. This suggests that a distinct ecological transition occurs between 1500 and 1750 m. Recent publications from the Kosñipata elevation transect (including these two plots) present evidence of a step change in below-ground (Girardin et al. 2013a) and above-ground (G. Girardin 2013, pers. comm.) productivity at the base of the cloud immersion zone, with significantly lower productivity rates and a sharp decline in tree biodiversity (Jankowski et al. 2012) in plots located within the cloud immersion zone. As a probable increase in cloud immersion frequency at SPD 1750 is the main difference between the two sites, we conclude that the distinct ecological difference between these plots is likely to be related to the cloud immersion zone rather than the linear change in temperature with increasing elevation.

We estimated that 69 ± 19% of GPP was allocated to R_a in SP 1500, compared with 75% in SP 1750. Hence, R_a was proportionally higher in SP 1750, resulting in a lower CUE value. The CUE of SP 1500 (0.31 ± 0.04) is typical of tropical old-growth forests, for which the ecological literature reports values of ca. 0.3 (Litton et al. 2007; Malhi 2012; Matthews et al. 2012). However, the CUE of SP 1750 is the lowest reported in tropical literature (0.25 ± 0.03). One possible interpretation of this is a higher allocation to metabolic processes as a result of a feature of the equilibrium environment, for example highly variable light environment (Matthews et al. 2012). Another intriguing possibility is that the forest at 1750 m is no longer at metabolic equilibrium with local climate. A similarly low value of CUE has been reported for an artificial drought experiment in a lowland Amazonian forest (Metcalfe et al. 2010), where it was interpreted as being partially due to net loss and emission of carbon from non-structural carbohydrate reserves. Observations and model predictions show that temperatures are rising in the region and will continue to rise (Malhi and Wright 2004; Urrutia and Vuille 2009). However, any corresponding directional change of the cloud base (cloud frequency, elevation shifts in cloud base formation) remains uncertain (Foster 2001; Rapp and Silman 2012). Our results highlight the need to understand the nature of the ecotone at the cloud base. Here, we hypothesise that the reported decrease in productivity may be driven by cloud immersion: this significant change over small distances may be explained by the fact that these two plots are distributed around the cloud base. SP 1750 is likely more frequently immersed by clouds than SP 1500, possibly explaining why carbon dynamics at SP 1750 are closer to those observed in cloud forests than lowland rainforests. While this plot displays the ecological composition of cloud montane forests, we speculate that the climate regime it experiences is shifting to that of a forest below the cloud base. Hence the climatic threshold position may already have shifted, but the tree community may not have yet. A change in cloud immersion regime resulting in a discrepancy between the ecological functioning of the forest and its climate regime may explain a low CUE indicative of forests out of metabolic equilibrium. However, this remains pure speculation based on the available evidence, and it is important to recognise the potential for unaccounted errors in the scaling of autotrophic respiration. Finally, the results presented here demonstrate the importance of understanding ecophysiological and ecological processes at the cloud base zone of the tropics, and the value of targeted long-term ecological and microclimate monitoring of this critical but poorly understood ecotone.

Acknowledgements

This work is a product of the RAINFOR and ABERG research consortia, and embedded within the GEM (Global Ecosystems Monitoring) network of research sites. It was funded by grants from the Gordon and Betty Moore Foundation to the Amazon Forest Inventory Work (RAINFOR) and the Andes Biodiversity and Ecosystems Research Group (ABERG), and a grant to YM and PM from the UK Natural Environment Research Council (Grant NE/D014174/1). YM is supported by the Jackson Foundation and the Oxford Martin School. We thank the Cock of the Rock Lodge at San Pedro, and Sr. Demetrio, for logistical support with this work, and INRENA for permits to conduct research in Peru.

Notes on contributors

Walter Huaraca Huasco is a botanist and plant biologist who focuses on carbon cycling in tropical forest ecosystems.

Cécile A.J. Girardin is an ecosystems scientist who focuses on carbon dynamics of tropical forest ecosystems.

Christopher E. Doughty is a junior research fellow. His main interest is understanding tropical forest carbon fluxes, through remote sensing, eddy covariance, leaf gas exchange and intensive carbon cycle plots.

Daniel B. Metcalfe is an assistant professor. He is interested in a wide range of topics broadly related to forest carbon cycling and climate.
References

